

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

T170(E)(J22)T AUGUST 2010

NATIONAL CERTIFICATE

BUILDING AND STRUCTURAL SURVEYING N6

(8060056)

22 July (X-Paper) 09:00 - 12:00

Calculators may be used.

This question paper consists of 5 pages, 4 annexures and a 2-page formula sheet.

PARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE
BUILDING AND STRUCTURAL SURVEYING N6
TIME: 3 HOURS
MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Test ALL the calculations.
- Write your EXAMINATION NUMBER on the ANNEXURES and place them in the ANSWER BOOK.
- 6. Write neatly and legibly.

QUESTION 1

Given the following information:

Observed angles	Distances
BCD 109° 21' 17" CDE 225° 22' 59" DEF 156° 30' 15" EFG 302° 35' 52" FGH 101° 14' 27"	CD 295,37 m DE 313,70 m EF 312,68 m FG 134,80 m

Co-ordinates

Directions

C + 1 266,28 + 1 480,68 G + 465,92 + 1 352.10

BC 300° 25' 37" GH 295° 35' 52"

1.1 Calculate the oriented directions in the ANSWER BOOK.

(10)

1.2 Use the oriented directions to calculate the traverse on the attached ANNEXURE 1.

(20) [**30]**

QUESTION 2

The notes refer to observations from F in a tacheometric survey.

The elevation of survey station F2 is 436,28 m and the theodolite is 1,54 m above F.

The booked vertical angles are zenith distances.

STAFF STATION	HORIZONTAL ANGLE	VERTICAL ANGLE	STADIA READINGS
F1	197° 52' 38"	80° 16′ 44"	1,50 0,70
F2	236° 12' 54"	96° 28' 18"	3,00 1,32
F3	296° 58' 34"	86° 50' 40"	1,62 0,74

Use the above information to complete the tacheometric sheet on the attached ANNEXURE 2.

(15)

2.2 Calculate the horizontal distance F1 to F3 in the ANSWER BOOK.

(5) [**20]**

QUESTION 3

Plot the cutting and embankment line on the attached ANNEXURE 3, if the area within the solid lines (A B C D) is to be brought to a formation level of 100 m. The side slope is 1:2 (1 vertical).

[10]

QUESTION 4

Calculate the area of a road cross section given the following information:

Formation width

11 m

Central height

4.78 m

Cross slope

1:7 (1 vertical)

Side slopes

1:1,5 (1 vertical)

[7]

QUESTION 5

A road curve is to be staked out from the B.C. (beginning of curve) to the E.C. (end of curve).

The chainage at the interception point is 2 894,06 m.

The radius is 210,80 m.

The angle of intersection (Δ) is 43:09:04.

The curve is to the right.

Pegs are required at every full 20 m chainage.

Calculate the following:

3 . 1	angent length	(3)
5.2	Arc length	(3)
5.3	Chainage at beginning of curve	(2)
5.4	Chainage at end of curve	(2)
5.5	The complete setting-out data from B.C to E.C. Tabulate the setting-out data	(-)

QUESTION 6

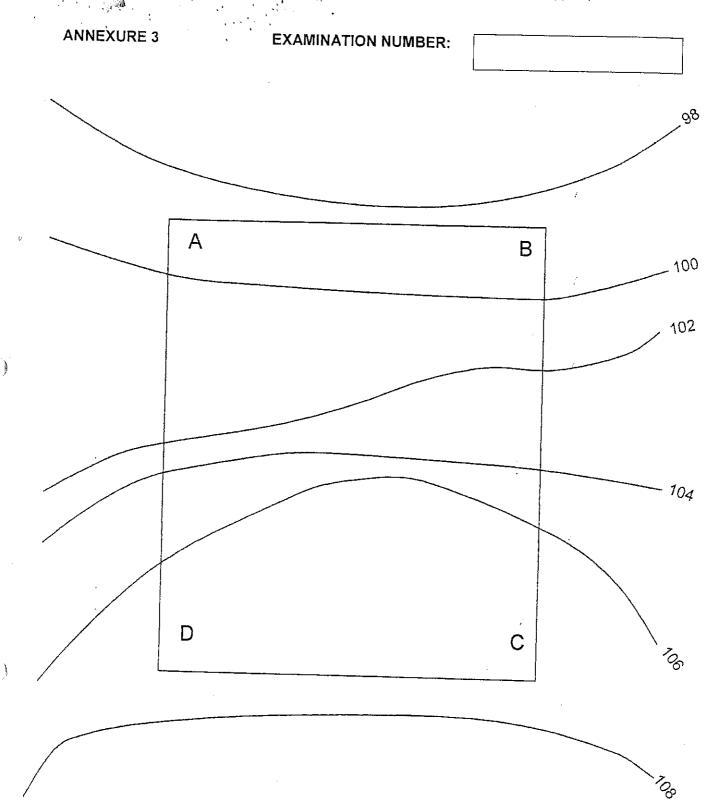
ANNEXURE 4 (attached) shows the plan of a steel framed building on level ground.

To set out the building steel pegs are to be inserted in the ground 2,5 m away from the center lines on each side of the building.

Use the ANSWER BOOK to explain how you would set out the building by using a theodolite and a tape.

Do the necessary sketches on the attached ANNEXURE 4 to aid your explanation.

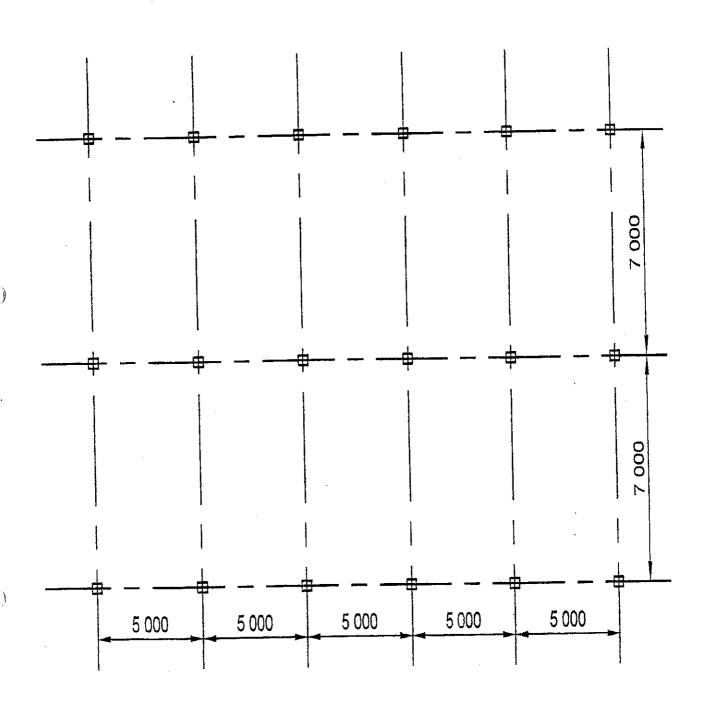
[10]


[21]

QUESTION 7

Explain the term bisecting of a target angle used in surveying.

[2]


TOTAL: 100

SCALE 1:500

ANNEXURE 4

EXAMINATION NUMBER:

T170(E)(J22)T

ANNEXURE 2

EXAMINATION NUMBER:

_		_			 	 	·							
Domonico	Nellialks											-		
Flavation	of point			С					_					
	Height It difference					_								_
	component +-													
													•	
Angles	Vert													
And	Hor						-							
ō	middle hair MH													
Distance	Hor													
Dist	Stadia									-				
on	То		<u> </u>		F2		F3	-						
Station	From	ш									<u> </u>			

Λ	NI	NE	Υ	11	R	F	1
-	1141	M.L	-^	u	,,	_	

FΧΔ	TAILS.	A T1/	N.	MI	MR	FR
- X 4	MILIM	A I I	JIN	NU	IVID	

ļ				
i				
- 1				
	í	 	 	

JOIN	ΔΥ	ΔΧ	NAME	Υ	X
			С		
			D		
			E		
-					
			F		
	JOIN	JOIN AY		D E	D E F

BUILDING AND STRUCTURAL SURVEYING N6

FORMULA SHEET

Any applicable formula may also be used.

$$\alpha = \tan^{-1} \frac{\Delta y}{\Delta x}$$

$$\alpha = \tan^{-1} \frac{\Delta x}{\Delta y} + 90^{\circ}$$

$$\alpha = \tan^{-1} \frac{\Delta y}{\Delta x} + 180^{\circ}$$

$$\alpha = \tan^{-1} \frac{\Delta x}{\Delta y} + 270^{\circ}$$

$$S = \frac{\Delta y}{\sin \alpha}$$

$$S = \frac{\Delta x}{\cos \alpha}$$

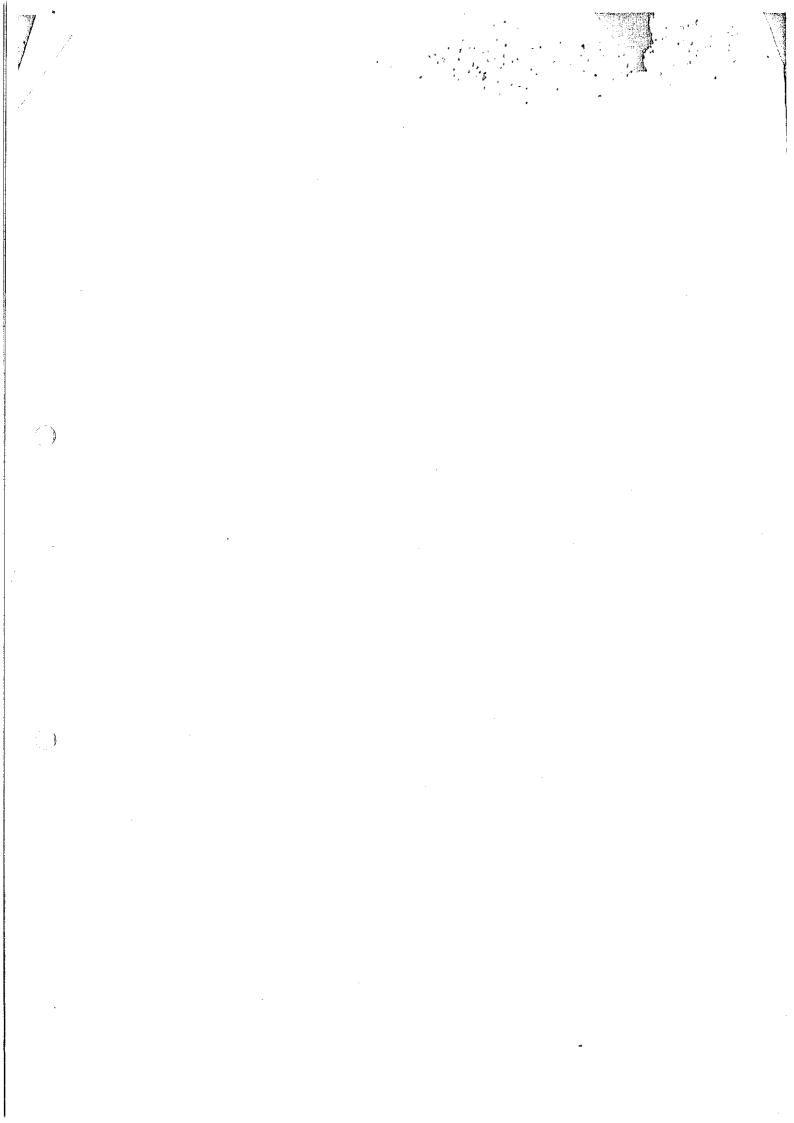
$$\Delta y = s.\sin\alpha$$

$$\Delta x = s.\cos\alpha$$

$$C = \frac{\text{Distance}}{\text{Total distance}} X_{\ell}$$

$$h = 50I \sin 2\Box + HI - MH = 100I \sin\Box \cos\Box + HI - MH$$

$$HD = 100I\cos^2\theta$$


$$T = R \cdot \tan \frac{\Delta}{2}$$

$$La = \frac{\pi \cdot \Delta \cdot R}{180}$$

$$\theta = \frac{1718,9.a}{R}$$

$$Cd = T \cdot \tan \frac{\Delta}{4}$$

$$Lc = 2R.\sin\frac{\Delta}{2}$$

$$W_1 = \frac{g(a+hs)}{g-s}$$

$$W_2 = \frac{g(a+hs)}{g+s}$$

$$A = \frac{W_1 W_2 - a^2}{S}$$

$$a^2 = b^2 + c^2 - 2bc.CosA$$

$$b^2 = a^2 + c^2 - 2ac.CosB$$

$$c^2 = a^2 + b^2 - 2ab.CosC$$

$$\frac{SinA}{a} = \frac{SinB}{b} = \frac{SinC}{c}$$